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Simple Summary: Approximately 70% of patients with advanced epithelial ovarian cancer who
achieve clinical remission after initial surgery and chemotherapy have a recurrence. Wilms’ Tumor
1 (WT1), which is overexpressed in ovarian cancer cells, is a promising target for tumor-directed
immunotherapy for ovarian cancer due to its prevalence and specificity. The aim of our open-label,
non-randomized phase I study was to assess the safety of a WT1 peptide vaccine (galinpepimut-S)
in combination with nivolumab in patients with WT1-expressing ovarian cancer in second or third
remission. In a sample of 11 patients, the combination of galinpepimut-S vaccine and nivolumab
induced immune responses and was deemed safe and tolerable. Our findings provide additional
evidence that the combination of immune checkpoint inhibitors (e.g., nivolumab) and vaccines results
in enhanced anti-tumor immune responses.

Abstract: We examined the safety and immunogenicity of sequential administration of a tetravalent,
non-HLA (human leukocyte antigen) restricted, heteroclitic Wilms’ Tumor 1 (WT1) peptide vaccine
(galinpepimut-S) with anti–PD-1 (programmed cell death protein 1) nivolumab. This open-label,
non-randomized phase I study enrolled patients with WT1-expressing ovarian cancer in second or
third remission from June 2016 to July 2017. Therapy included six (every two weeks) subcutaneous
inoculations of galinpepimut-S vaccine adjuvanted with Montanide, low-dose subcutaneous sar-
gramostim at the injection site, with intravenous nivolumab over 12 weeks, and up to six additional
doses until disease progression or toxicity. One-year progression-free survival (PFS) was correlated to
T-cell responses and WT1-specific immunoglobulin (Ig)G levels. Eleven patients were enrolled; seven
experienced a grade 1 adverse event, and one experienced a grade ≥3 adverse event considered a
dose-limiting toxicity. Ten (91%) of eleven patients had T-cell responses to WT1 peptides. Seven
(88%) of eight evaluable patients had IgG against WT1 antigen and full-length protein. In evaluable
patients who received >2 treatments of galinpepimut-S and nivolumab, the 1-year PFS rate was 70%.
Coadministration of galinpepimut-S and nivolumab demonstrated a tolerable toxicity profile and
induced immune responses, as indicated by immunophenotyping and WT1-specific IgG production.
Exploratory analysis for efficacy yielded a promising 1-year PFS rate.
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1. Introduction

Approximately 70% of patients with advanced epithelial ovarian cancer (EOC) who
achieve clinical remission after initial surgery and chemotherapy will recur. Over a disease
course, which typically entails successive recurrences, patients may require multiple lines of
cytotoxic, hormonal, and/or targeted therapy [1]. With each treatment, remission duration
usually shortens until broad chemoresistance develops [1], highlighting the need for novel
strategies to extend remission duration and optimize survival outcomes.

There are ongoing trials to determine the safety and efficacy of immune-oncology
therapies, such as immune checkpoint inhibition, adoptive cellular therapies, and can-
cer vaccines, in the treatment of recurrent EOC. Preclinical models have demonstrated
efficacy with both passively administered antibodies and vaccines, suggesting a role for im-
munomodulation in EOC treatment [2,3]. Furthermore, higher levels of tumor-infiltrating
T cells are associated with longer survival in patients with EOC [4–6]. Despite this com-
pelling evidence, investigations have failed to demonstrate the benefit of immunomod-
ulatory agents in EOC treatment, and there are no approved immunotherapies in this
setting [7–11].

EOC cells overexpress several potentially targetable antigens minimally expressed in
normal tissues, including Wilms’ Tumor 1 (WT1; 65% of patients), mucin 1 (MUC1; 90%
of patients), MUC16 (85% of patients), New York esophageal squamous cell carcinoma
1 (NY-ESO-1; 40% of patients), and YKL-40 (76% of patients) [12–15]. Phase I trials have
demonstrated the safe and effective induction of antibody responses to monovalent and
polyvalent vaccines in various “stages” of the disease process in patients with EOC [16–20].
Unfortunately, these findings have not translated into clinical benefit. GOG-255, a random-
ized phase II trial in patients with recurrent ovarian cancer who are in clinical remission,
investigated the survival benefit of a polyvalent vaccine conjugate of GM2-keyhole limpet
hemocyanin (KLH), Globo-H-KLH, Tn-MUC1-32mer-KLH, and Thompson Freidreich anti-
gen (TF)-KLH [16]. Although vaccination maintenance failed to prolong survival, 50% of
patients did not experience an immunoglobulin (Ig)M response to the individual antigens
in the vaccine; therefore, the study results were difficult to interpret. A large phase III
randomized controlled trial of passive immunotherapy with abagovomab, an anti-idiotypic
antibody against the CA-125 tumor antigen, also failed to demonstrate a survival benefit in
patients with ovarian cancer [21]. In both studies, the authors concluded that future vaccine
trials should leverage the concomitant or metachronous administration of vaccines with
immune-modulating agents, such as checkpoint inhibitors, to potentiate immune responses
to vaccines. Pre-clinical data have demonstrated that combining immune checkpoint in-
hibition and vaccines results in enhanced anti-tumor immune responses [22]. There are
currently more than 80 ongoing vaccine clinical trials in ovarian cancer; however, few are
assessing combinations with immune checkpoint inhibition [11]. The rationale for combi-
nation therapy with immune checkpoint inhibition is to create a favorable immunologic
environment by attenuating immunosuppressive mechanisms, thereby encouraging the
action of effector T cells generated by tumor-associated antigen vaccines. Nivolumab, in
particular, has been studied as a companion immune checkpoint inhibitor in several clinical
trials due to its tolerability, and its potential to enhance the durability of response to cancer
vaccines [22].

WT1 represents an ideal target for tumor-directed immunotherapy in EOC, as it is an
oncofetal antigen with expression in normal adult tissues limited to kidney, ovary, testis,
spleen, and mesothelial lining but with overexpression in EOC cells [23–25]. Immuno-
histochemistry (IHC) has demonstrated high WT1 expression in serous ovarian tumors
compared to other histologic subtypes [26]. Various peptide sequences from the WT1
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antigen have been identified as immunogenic and capable of evoking sustained cytotoxic
T-cell (CTL) responses that, in turn, target and kill WT1-expressing cancer cells [27]. Ini-
tial data with the WT1 peptide vaccine galinpepimut-S (GPS), which is a mixture of two
native and two heteroclitic (mutated analogue) WT1 peptides, have been promising. GPS
immunization in patients with malignant pleural mesothelioma demonstrated improved
overall survival (OS) in patients who received the vaccine in the adjuvant setting after
frontline standard tumor debulking with trimodality therapy compared to controls [28]. A
phase II trial demonstrated superior median progression-free survival (PFS) in high-risk
patients with multiple myeloma who received GPS plus lenalidomide compared to histori-
cal immunomodulator-alone therapy following successful autologous stem cell transplant;
there was also a trend toward higher rates of hematologic complete response and very
good partial response in the subgroup of patients with long-term, sustained high frequency
of peripheral blood WT1-specific CD4+ T cells [29]. Moreover, GPS monotherapy has
been used in the maintenance setting in patients with acute myeloid leukemia (AML) who
successfully achieved first or second complete remission, resulting in good tolerance, high
frequency of WT1-specific T-cell response, and preliminary evidence of antileukemic activ-
ity leading to prolonged OS over historical controls [30–32]. Finally, GPS is being studied
in an ongoing phase III open-label, randomized clinical trial as maintenance therapy in
patients with AML who have successfully achieved second complete remission versus best
available therapy (NCT04229979).

We investigated the safety and immunogenicity of a WT1-targeting non–HLA-restricted
heteroclitic tetravalent peptide vaccine (GPS) in combination with immune checkpoint in-
hibition (the anti–PD-1 [programmed cell death protein 1] nivolumab) in an open-label,
non-comparative phase I trial of patients with WT1-positive EOC in second or third remission
(NCT02737787). The primary endpoint was safety. Exploratory analyses included T-cell and
serological analyses to investigate cellular and humoral immune responses; estimated 1-year
PFS rate; and potential association of PFS with T-cell responses or IgG production.

2. Materials and Methods
2.1. Eligibility Criteria

Patients with histologically confirmed WT1-positive, recurrent, platinum-sensitive or
platinum-resistant EOC in second or third complete clinical remission within 4 months
of prior chemotherapy were eligible. Clinical remission was defined as a serum CA-125
level within normal limits and physical examination and computed tomography (CT) or
magnetic resonance imaging (MRI) without objective evidence of disease. Patients were
required to have a Karnofsky performance status of ≥70%. Patients with active infec-
tion requiring systemic treatments, those with known or suspected autoimmune disease,
and those requiring systemic treatment with corticosteroids (>10 mg daily prednisone
equivalents) or other immunosuppressive medications within 14 days of study drug ad-
ministration were excluded.

Screening for WT1 positivity was performed from archival fresh-frozen paraffin-
embedded tissue, unstained slides, or fresh tissue by IHC as previously described [33], and
patients harboring WT1-positive tumors (IHC score ≥6) were eligible for study enrollment.

This study was approved by the Memorial Sloan Kettering Cancer Center (MSK)
Institutional Review Board (protocol #15-247). Patients signed informed consent for WT1
tumor testing and study treatment participation.

2.2. Treatment Plan

Patients received six doses of a vaccine containing 800 mcg of GPS (SELLAS Life
Sciences Group, Inc., New York, NY, USA) administered subcutaneously (s.c.) at a 1:1
ratio with 0.7 mL of Montanide ISA 51 VG (an immune adjuvant containing a natural oil
and refined emulsifier; SEPPIC, Inc., Fairfield, NJ, USA) over a 10-week period (weeks
0, 2, 4, 6, 8, and 10). Vaccines were administered with seven doses of the anti–PD-1
IgG4 monoclonal antibody nivolumab (Bristol Myers Squibb, Lawrenceville, NJ, USA)
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at 3 mg/kg intravenously (IV) over a 12-week period (weeks 0, 2, 4, 6, 8, 10, and 12).
Injection sites were primed with 70 mcg sargramostim (human granulocyte-macrophage
colony-stimulating factor [huGM-CSF]; Partner Therapeutics, Inc., Lexington, MA, USA)
administered s.c. both 2 days before and on the day of each GPS vaccine. Vaccines were
administered in patients’ extremities, and vaccination sites were rotated with each dose.
Patients who remained in remission were offered a maintenance course of vaccination
with GPS plus Montanide (after sargramostim priming)—without nivolumab—at weeks
19, 27, 35, and 43 (Figure S1). CT scans were obtained at baseline, week 15, and every 3
months thereafter for up to 1 year in those without disease progression. CA-125 levels were
obtained at baseline, weeks 6, 15, and every 3 months thereafter for up to 1 year in those
without disease progression. Treatment was discontinued at the end of the maintenance
period, at the time of disease progression, or with a dose-limiting toxicity (DLT).

2.3. Vaccine Preparation

To enhance the immunogenicity of the WT1 vaccine, synthetic analogue peptides
were developed from WT1 protein sequences using computer prediction analysis. After
substituting single or double amino acids at key HLA A*0201 binding positions, peptides
were directly assayed for their ability to stabilize major histocompatibility (MHC) class
I A*0201 molecules on the surface of a T2 cell line negative for expression of transporter
associated with antigen processing (TAP). Avidly binding peptides were assayed in an
antigen-specific T-cell expansion in vitro system, and their abilities to elicit HLA-restricted,
peptide-specific CD8+ CTL responses were assessed using purified T cells from healthy
donors. CD8+ T cells stimulated by the synthetic peptides demonstrated cross-reactivity
with native WT1 peptides (a heteroclitic response) and the ability to kill HLA-matched
chronic myelogenous leukemia (CML) blasts [34]. Two synthetic analogue peptides (WT1-
A1 HLA class I peptide [9 amino acids] and WT1-122A1 long HLA class II peptide
) generated a more effective immune response than native peptides; these were combined
with two longer WT1 sequences capable of inducing in vitro CD4+ and CD8+ responses
(namely, the WT1-427 long [19 amino acids] and WT1-331 long [22 amino acids] HLA class
II peptides) to construct the tetravalent GPS vaccine [31]. Three peptides were designed to
stimulate common HLA-antigen D related (HLA-DR) expressing cells, and one peptide
was designed to stimulate HLA A*0201 cells. The provenance of the GPS vaccine has been
previously described [22,35–37].

2.4. Toxicity Evaluation

Toxicity was graded by the National Cancer Institute Common Terminology Criteria
for Adverse Events version 4.0 (CTCAE v4.0), and assessments were performed at baseline
and weeks 1, 2, 4, 6, 8, 10, and 12, and 3 weeks after therapy completion at week 15.
Thereafter, adverse events were reported every 3 months for up to 1 year or until disease
progression. DLTs were evaluated within 30 days of first vaccination, and included any
grade 5 adverse event, any grade 2 drug-related ophthalmic adverse event, any grade 3
drug-related adverse event or laboratory abnormality lasting >72 h (exceptions detailed
in the study protocol), any grade 4 drug-related adverse event or laboratory abnormality
(exceptions detailed in the study protocol), grade 3 injection site reaction, grade 3 fever,
or any adverse event presenting a substantial clinical risk to the patient as judged by the
investigator. The detection of more than two DLTs among 10 treated patients was grounds
for study discontinuation due to safety concerns.

2.5. Immune Response Evaluation

Immune monitoring occurred at screening, weeks 0, 6, 15, and every 3 months until
recurrence or study end.

To investigate antigen-specific T-cell responses, cytokine production after antigenic
stimulation was used as a readout via intracellular cytokine staining with a T-cell flow
cytometry panel on thawed peripheral blood mononuclear cell (PBMC) samples cultured
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with the relevant vaccine antigens. After initial thaw, cells were rested overnight at
37 ◦C and then separately stimulated with six different peptide antigens (WT1-A and
WT1-A1 in HLA-A*02 patients, as well as 122-A, 122-A1, 331 L, and 427 L) or a CEF-
positive control peptide pool consisting of 32 MHC class-I restricted viral peptides from
human cytomegalovirus, Epstein-Barr virus, and influenza virus, along with supplemen-
tal interleukin (IL)-2 and IL-15, which were replaced every 2–3 days. At the end of the
10-day culture period, cells were counted, washed, and restimulated with the same initial
peptide antigens (or an irrelevant long peptide B2A2 from the BCR-ABL fusion protein)
plus fluorescence-labeled antibody to degranulation marker CD107a (H4A3, BioLegend)
for 6 h, with the last 4 h in the presence of Golgi transport inhibitors Brefeldin-A and
monensin. The cells stimulated with irrelevant peptide were used as negative controls
to establish cytokine positivity gates in flow. After the restimulation period, cells were
then stained with a viability dye and antibodies to surface CD8 (SK1, BD Biosciences),
fixed, permeabilized, washed, and refrigerated overnight in permeabilization buffer. On
the following day, cells were stained with fluorescence-labeled antibodies to CD3 (UCHT1,
BD Biosciences), CD4 (SK3, BD Biosciences), and the following intracellular cytokines:
interferon (IFN)-γ (B27, BD Biosciences), IL-2 (5344.111, BD Biosciences), and tumor necro-
sis factor (TNF)-α (Mab11, BD Biosciences). Cells were then washed and resuspended in
phosphate-buffered saline (PBS)/1% fetal bovine serum (FBS) buffer for acquisition on a
BD Biosciences Fortessa X-20 flow cytometer. After acquisition, flow cytometry data were
analyzed using FlowJo software (FlowJo, LLC) to assess polyfunctional T-cell responses
in gated CD4 and CD8 T-cell subsets, with TNF-α production used as the representative
cytokine for measurement of the antigen-specific T-cell response given its relative promi-
nence across the various cytokines evaluated. Percentages of cytokine-positive T cells with
antigen responses 2-fold higher compared to control (irrelevant) peptides were considered
positive immune responses. In addition to the intracellular cytokine staining panel, a
separate T-cell flow immunophenotyping panel was used to examine CD4+ and CD8+
T-cell expression of CD38 (HIT2, BioLegend), PD-1 (MIH4, BD Biosciences), programmed
death-ligand 1 (PD-L1), Ki67 (B56, BD Biosciences), Granzyme B (GB11, BD Biosciences),
and CD25 (M-A251, BD Biosciences). For these assays, isotype controls were used for each
marker to set the gates for determining positivity.

To investigate humoral immune responses, IgG was measured by enzyme-linked
immunosorbent assay (ELISA) against individual WT1 peptides within GPS as well as
full-length WT1 and control antigens NY-ESO-1, MUC16, and DHFR. Measurements were
conducted by ELISA at baseline (screening and week 0), weeks 6, 15, 21–27, and 48 (or at
time of disease progression for patients coming off study early).

2.6. Statistical Considerations

The primary endpoint of this phase I study was the safety of nivolumab in combi-
nation with the GPS vaccine (administered as an emulsion with Montanide and using
sargramostim as an immune adjuvant/pre-vaccination “primer”). The initial plan was to
enroll 10 evaluable patients, i.e., those who completed at least one dose of GPS vaccination.
Detection of 2 or fewer DLTs would deem the combination safe. Descriptive characteristics
were used to describe toxicities and immune responses.

For secondary objectives, the antigen-specific T-cell response was considered positive if
values were at least 2-fold higher with test peptides compared to the background observed
with control (irrelevant) peptides. Criteria for IgG immune responders were based on
prior studies and defined as patients with anti-WT1 antibody titers that increased from
undetectable to ≥1:40 post-treatment, or those with an ≥8-fold increase over detectable
pretreatment levels at any time point [19]. PFS was measured from the start date of
the preceding chemotherapy session to the date of progression of disease by Response
Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria or death (while on study). This
interval was chosen following recommendations for maintenance trials in ovarian cancer
to measure the effect of consolidation therapy independent of the effect of the therapy that
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achieved clinical remission [38]. Patients alive and progression free were censored at the
time of their last available/recorded follow-up, and 1-year PFS was defined as an endpoint
at the initiation of the study.

3. Results
3.1. Patient Characteristics

Twenty-five patients consented for WT1 testing of their tumor (MSK protocol #15-
247; NCT02737787) between June 2016 and July 2017. Of 25 patients, 23 were tested, and
22 (96%) of 23 had WT1-positive tumors. During screening, 10 patients were deemed
ineligible due to persistent disease on imaging, and 1 withdrew consent. Eleven patients
consented to study treatment. Baseline demographics and disease characteristics are
presented in Table 1. All patients had a normal CA-125 level and did not have radiographic
evidence of disease at the time of study enrollment. The median CA-125 level at enrollment
was 7 units/mL (range, 3–21; normal <35 units/mL).

Table 1. Study population (N = 11).

Patient Characteristic n (%)

Median age, years (range) 62 (40–74)
Median CA-125 level at study enrollment, units/mL (range) 7 (3–21)
Race

Asian 1 (9%)
Black 1 (9%)
White 9 (82%)

HLA subtype
A*0201 4 (36%)
A*0101 2 (18%)
A*2402 2 (18%)
A*1101 1 (9%)
A*0301 1 (9%)
A*23 1 (9%)

Histologic subtype
High-grade serous 10 (91%)
Low-grade serous 1 (9%)

Stage at diagnosis
II 1 (9%)
III 9 (82%)
IV 1 (9%)

Prior lines of chemotherapy
1 1 (9%)
2 5 (46%)
3 4 (36%)
4 1 (9%)

The median patient age was 62 years (range, 40–74), and all patients had a Karnofsky
Performance Status of 90% or ECOG 0. The most common HLA-A subtypes were HLA-
A*0201 (36%), HLA-A*0101 (18%), and HLA-A*2402 (18%) (Table S1). The median WT1
score was 12 (range, 8–12). Ten patients had high-grade serous carcinoma, and one had
low-grade serous carcinoma. Nine (82%) had International Federation of Gynecology and
Obstetrics (FIGO) stage III disease at diagnosis. All patients had platinum-sensitive disease,
and the median number of prior chemotherapy regimens was two (range, 1–4). The median
time from last dose of cytotoxic therapy to initiation of the trial intervention was 1.6 months
(range, 0.7–2.6).

3.2. Safety and Tolerability

All 11 patients were included in the safety analysis. The most common adverse
event was injection site reaction (64%; all grade 1); 36% had arthralgia (grade 1 and
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2); and 36% experienced fatigue (grade 1 and 2). In total, there were 25 grade 1 toxici-
ties and 8 grade 2 toxicities. One patient experienced a grade 3 immune-related myosi-
tis/myocarditis attributed to the study intervention, which was considered a DLT. There
were no grade 4 or 5 toxicities. Eight (73%) of the eleven patients reported at least one ad-
verse event and seven patients (64%) had more than one adverse event. Data on maximum
toxicity for treatment-related adverse events are reported in Table 2.

Table 2. Patients per maximum toxicity for treatment-related events (N = 11).

Treatment-Related Adverse Event Grade 1
n (%)

Grade 2
n (%)

Grade 3
n (%)

Injection site reaction 7 (64%) 0 0
Arthralgia 3 (27%) 1 (9%) 0
Fatigue 3 (27%) 1 (9%) 0
Myositis/myocarditis 0 0 1 (9%)
Rash 1 (9%) 1 (9%) 0
Decreased white blood cell counts 1 (9%) 1 (9%) 0
Decreased platelet counts 0 1 (9%) 0
Hypothyroidism 0 1 (9%) 0
Pneumonitis 1 (9%) 0 0
Alopecia 0 1 (9%) 0
Diarrhea 1 (9%) 0 0
Vision changes (floaters) 1 (9%) 0 0
Pruritis 1 (9%) 0 0
Weight loss 0 1 (9%) 0

The DLT occurred in a 75-year-old woman (HLA-A*0101) with a history of multivessel
coronary artery disease, hypertension, hyperlipidemia, obesity, and diet-controlled type
2 diabetes mellitus. After two doses of nivolumab 3 mg/kg and GPS (21 days after
study initiation), she experienced complete heart block. Laboratory findings were notable
for elevated troponin I at 17.1 ng/mL (normal <0.6 ng/mL) and CK-MB at 249.4 ng/dL
(normal <5.0 ng/dL). Cardiac catheterization demonstrated no new coronary artery disease,
and transthoracic echocardiography showed no ischemic cardiomyopathy or valvular
disease. The patient required pacemaker insertion. Based on clinical, laboratory, and
imaging findings, the patient met the criteria for clinically suspected myocarditis [39,40]. A
week later, she developed diffuse myositis and dysphagia. Muscle biopsy revealed focal
myofiber necrosis, mild inflammation, and a type II myofiber atrophy consistent with an
immune-mediated myopathic disorder. The immune-related adverse event was attributed
to nivolumab, and the patient required IV methylprednisolone and insertion of a feeding
tube. This was followed by a prolonged steroid taper and long-term rehabilitation including
physical therapy. The patient thereafter remained under the care of a cardiologist for
ongoing management of her permanent pacemaker. Six months after her discontinuation
from the study, the patient returned to her baseline status and subsequently resumed
chemotherapy with her medical oncologist who continued to follow her closely.

3.3. Immune Response

Investigations of peripheral blood immune cell subpopulation frequencies and surface
activation markers were conducted at screening, throughout treatment, and at 3–6 months
of follow-up. For antigen-specific T-cell response assays, 51 samples from 11 patients were
available. For immunophenotyping assays, 35 samples from 8 patients were available.

We first assessed frequencies of peripheral blood CD4 and CD8 T-cell subsets, as
well as their phenotypic expression of PD-1, PD-L1, CD38, CD25, Ki67, and granzyme B.
Among the patients with available samples, the majority did not have significant changes in
circulating CD4 or CD8 T-cell populations (Figure 1). There was a trend toward decreased
expression of PD-1 post-treatment in CD4+ and CD8+ T-cell subsets in the majority of
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samples. There were no consistent trends in phenotypic expression of CD38, CD25, Ki67,
or granzyme B by CD4 or CD8 T cells among the study population (Figures S2 and S3).
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We then examined cytokine responses (TNFα, IFNγ, and IL-2) of CD4 and CD8 T cells
to test peptides. Ten (91%) of eleven patients experienced vaccine-specific T-cell responses,
primarily within CD4+ T cells (Figure 2). These responses peaked at 6–15 weeks in several
patients. The most robust responses against specific peptides were CD4+ T-cell responses
against 331 L and 427 L peptides, with weaker responses against 122-A and 122-A1 in some
patients (Figures 2 and S4–S8). The longevity of these responses was limited; only two out
of six patients exhibited responses at longer-term follow-up visits.

To assess humoral responses, we measured serum levels of IgG against individual
WT1 peptides within the GPS vaccine and against the full-length WT1 protein at screening,
prior to the first dose of vaccine, and throughout each patient’s treatment course (range,
0–48 weeks) (Figure 3). Among eight evaluable patients, increased serum levels of IgG
were induced for 88% between weeks 6–27 for both WT1 peptides and the full-length WT1
protein. The induction of WT1-specific IgG antibodies following GPS administration was
highly consistent among patients, some detectable as early as week 6, and achieving high
titers (>1/10,000) in most patients. Induction patterns for IgG antibodies against individual
peptides within the GPS mixture were similar to those against the full-length WT1 protein.
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necrosis factor.
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3.4. Exploratory Analysis

The 1-year PFS rate was 64% in the intent-to-treat group (n = 11) and 70% in the
group of patients who received >2 doses of GPS and nivolumab (n = 10). CA-125 re-
sults are depicted in Figure S9. Among all 11 patients, the median PFS was 12.9 months
(95% CI, 2.8–23.1) (Figure 4). Two patients, both with three prior lines of cytotoxic therapy
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for high-grade serous carcinoma, remained recurrence-free at 55.3 months and 53.8 months,
respectively. One patient had a WT1 score of 12, while the other patient had a WT1 score
of 8. Both patients displayed CD4+ T-cell responses and IgG responses against individual
WT1 peptides; their HLA subtypes were HLA A*0301 and HLA A*2402, respectively.
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4. Discussion

In this phase I trial, the combination of GPS vaccine and nivolumab was deemed safe.
The most common adverse event was localized injection site reaction in 64% of patients.

This common adverse event was similarly reported in 85% of patients in a study of
GPS in malignant pleural mesothelioma [25]. A large systematic review reported injection
site reactions in 67.9% of patients receiving the heavy depot oil Montanide, in which the
GPS peptide mixture is emulsified [41].

One patient experienced a DLT, myocarditis/myositis attributed to nivolumab, which
was classified as a grade 3 adverse event. Activation of a non-target immune response in
the heart and skeletal muscle is a rare but previously described adverse event of immune
checkpoint inhibition [42,43]. This phenomenon is attributed to the expression of certain
receptors, including PD-1, on cardiomyocytes and myocytes [43]. Multi-institutional retro-
spective studies and safety databases have reported immune checkpoint inhibition-associated
myocarditis rates of 0.06–1.14% and grade 3–4 myositis rates of 0.15–0.24% [39,44]. This
frequency indicates these are rare but potentially severe complications of immune checkpoint
inhibition [45]. Within the GPS vaccine literature, there are no known reports of myocardi-
tis, suggesting that this presentation was most likely uniquely attributable to the immune
checkpoint inhibition.

Myocarditis has the highest fatality rate among immune checkpoint inhibition toxic
events, reported at 39.7% in one large retrospective study [45]. Although baseline cardiac
disease has not been associated with an increased risk of immune checkpoint inhibition-
associated myocarditis, our patient had a medical history notable for diabetes mellitus and
obesity, which are risk factors for this rare complication [39]. Furthermore, her presentation
with myocarditis at 21 days following initiation of nivolumab is consistent with the median
time of onset reported in the literature at 27–34 days (range, 5–155) [39,46]. Fortunately, the
discontinuation of immune checkpoint inhibition, pacemaker insertion, and treatment with
IV steroids prevented an immune checkpoint inhibition-associated fatality.

Assessment of immune response, including frequencies of antigen-specific CD4 and
CD8 T cells over sequential vaccination, has been a key exploratory endpoint of GPS
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trials [28–32]. The ability to correlate multiple parameters, including cytokine channel,
specific WT1 peptides, and CD4 and CD8 T-cell responses has been limited. In this study,
10 (91%) of 11 patients experienced vaccine-specific T-cell responses, primarily within
CD4+ T cells but also within CD8+ T-cell subpopulations. As in other studies, observed
responses peaked at 6–15 weeks, consistent with the cumulative effect [34,37,47]. Further,
IgG responses to an aggregate of WT1 peptides within GPS and the full-length WT1 protein
were induced in 88% of evaluable patients. These findings support the generation of the
WT1-specific immune response in the majority of patients, and suggest that combining
GPS and nivolumab to bypass local immune tolerance and negative signaling can rapidly
induce T-cell responses in patients with WT1-expressing EOC. As WT-1 positivity is present
in approximately 65% of patients with WT1-positive EOC, there is the potential for this
vaccine and immune checkpoint inhibition combination to effectively generate an immune
response in a large percentage of patients with EOC [12]. The therapeutic implications of
this immune response warrant additional investigation. Notably, the decrease in PD-1-
positive CD4 and CD8 T cells may be due to a technical artifact caused by interference of
anti–PD-1 antibody flow staining by bound therapeutic nivolumab; this would need to
be resolved in future experiments. Additionally, we were unable to disentangle antibody
responses and provide additional clarity on whether responses differed by WT1 peptide,
as IgG responses were measured in aggregate against the WT1 peptide fragment pool.
While the generation of a humoral immune response complemented the cellular immune
response findings with implications for durability of response, future investigations could
examine immune responses to a single epitope.

As an exploratory objective, we assessed 1-year PFS. The 64% PFS rate in the intent-to-
treat group and approximately 70% rate in patients who received >2 doses of the GPS and
nivolumab combination compare favorably to historic rates of up to 55% in comparable
patient populations [38]. The prolonged disease-free interval in two patients, who are in
remission >50 months, is notable. Other studies on immunomodulation in ovarian cancer,
such as the NINJA and NRG GY003 trials, have also reported extended duration of response
in patients who respond to immune checkpoint inhibition [10,48]. These data suggest that
durable responses to immunotherapy are attainable in certain patients with WT1-positive
EOC, in contrast to chemotherapy, for which responses in the recurrent setting are typically
short-lived.

The limitations of this study are primarily related to the small study size. Primarily,
outcomes including progression-free survival were difficult to correlate with immune
response data given the small sample size. In fact, the majority of patients had cellular
and humoral response signals without obvious correlates to survival outcomes, although
the population was preselected for patients with WT1-positive EOC. All patients were in
remission at the time of study entry, and therefore a randomized trial would be required
to ascertain the relative contribution of the study interventions on survival outcomes.
Certainly, correlating the translational data to patient outcomes in order to better select
candidates for this therapy would be beneficial in moving forward.

5. Conclusions

This phase I, open-label, non-randomized trial of combination therapy with an anti–
PD-1 (nivolumab) and GPS, a novel WT1-targeting non–HLA-restricted heteroclitic tetrava-
lent peptide vaccine, administered as maintenance therapy in patients with WT1-positive
ovarian cancer in second or third remission met its predetermined endpoint of safety and
tolerability. Preliminary data have shown WT1-specific immune response and encouraging
PFS results. These findings have served as the basis for an ongoing phase I/II study of GPS
in combination with the anti–PD-1 drug pembrolizumab in patients with ovarian cancer
and other solid tumors (SLS17-201/MK3475-770; NCT03761914).
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